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1. ABSTRACT 

Building successful neural networks is still largely a black art, depending on a great deal of 
specialised experience. Information presented to users is very voluminous, being the weights and 
activations of all the neurons, and any expert has to be able to extract the relevant information. By 
data visualisation we can manipulate the data so that the less experienced can more easily process 
the data to reach the same end. We present a simple animated colour display of neurons and their 
interconnection in a neural network which can be used with any standard network model. We 
show that by our visualisation technique finding redundant neurons becomes simple, which 
otherwise requires significant computation to perform automatically, or requires great expertise. 

2. VISUALISATION OF NEURONS 

In a neural network, there can be a large number of neurons, classified as input, hidden, and 
output neurons; for some models, there is no such distinction. The neurons could be arranged into 
a single layer, or into multiple layers; into pools without layers; or into pools within different 
layers. These neurons could be fully interconnected, including self-connection, or some arbitrary 
subset of this. The connections could be bi- or uni-directional, and can be excitatory or inhibitory.· 

When we study a particular neural network model, we are interested not only in its topological 
structure, but also its weights and activation and their changes, net input, output, goodness, and 
error. In some cases, we are interested in the ratio of internal and external input as well. 

In many cases, after the topology of network is set, we are mainly interested in the computation 
of each neuron. When a neural network is in use, the weights on connections between neurons are 
fixed and error does not change. We are interested in how the combinations of different weighted 
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and directed connections plus external inputs and biases affect the 
activation levels and their changes, and thus form the competition, 
blocking, resonance, hysteresis, etc., thus the internal state of the 
neural network. We could show the error surface such as in [1], 
but this does not show how the network finds a minimum, worse 
it provides no information on what has gone wrong at the 
individual neuron level if it is trapped in a local minimum. During 
neural network training, we· are interested in how weights change, 
how the error reduces, how the internal state changes when more 
patterns are learned. To show the internal state of a neural net is a 
high dimensional scientific data visualisation problem. 

A common display is that of Figure 1 [2]. There is a simple 
mapping between components so figuring out which activation 
level box corresponds to which neuron is possible. Nevertheless, 
interpreting the diagrams meaningfully is difficult in that we must 
constantly match parts of the diagram. It is not clear from this 
diagram whether any of the neurons are redundant or similar to 
each other on this input pattern. As the target pattern is not given, 
we assume the network was trained and is in use. 

While it is possible to become adept at discerning meaningful 
Figure 1. Graphical representation patterns in such displays, or from the standard voluminous 
of activation levels and weights. numeric displays, these all require significant time to learn. 
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To take advantage of the powerful 
information processing ability of our 
eyes and the visual processing parts of 
our brains, we developed a method to 
display the interstate of neural network 
which has complex, dynamic features 
as described above. We describe the 
general technique, and then specialise 
the display topology for the back
propagation network we will use in our 
examples. 

3. THE "FLOWER" METHOD 

We develop an information box for 
each neuron in a neural network. The 
box contains graphic information about 
the activation, input (including external 
input, internal input, bias, net input, 
and internal input ratio), output, 
equilibrium/ excitation /inhibition 
indicator, selected weights, and so on. 
We arrange these boxes into a circle 
regardless of the original topological 
structure so that we can concentrate on 
the behaviour of the units. This 
arrangement can be modified for 
particular models where the topology 
provides contextual aids for the user 
(as for back-propagation), or where the 
topology is meaningful, for example in 
the regularity detection paradigm. 

Some design considerations: 
Activation is one of the most 

important properties which we want to 
visualise as easily and accurately as 
possible. We are interested in its value, 
its changes, and in comparing between 
neurons. Usually the activation is in a 
range [Min, Max], so we design the 
activation as a bar in the box. The 
height of the box represents the range, 
and the length is proportional to the 
value. Red is the chosen colour because 

Figure 3a. Visualisation offeed-forward back-propagation network 
using specialised display. (B/W diagram) 

it is one of the most 'visible' colours in 
nature. Thus, we can easily and rr 

accurately capture and compare the 1 
dynamic feature of activation by the t 
animation of the activation bar. The 1· 

figures shown here are produced with a 
alternative black/white mapping. 

One exception to the range idea of 
activations is in linear auto-associator 
model: the activation can be any real 
number. Here we re-scale the boxes if 
some activation becomes too large. Figure 3b. Visualisation of feed-forward back-propagation network 

using general "flower" display. (B/W diagram) 



Inputs (internal, external, bias, net), 
output could be any number. It is not 
necessary to visualise them accurately, 
but is enough to know if there is any 
input or output, and if an input is 
stronger or weaker than others, if the 
output is similar to the target, etc. Thus 
we use colour, density to display them. 

The weights are the most difficult to 
visualise. There could be many 
connections in a network, and their 
weights could be any real number. 
There could be 4 kinds of connections 
(uni versus bi-directional, positive or 
negative) between neurons. Without a 
well chosen method to display the 
connections and their weights, we will 
produce a useless mess. When a 
network is in use, the connections and 
their weights are fixed, so different 
users may want to see different groups 
of connections. When the network is in 
training, we want to see all the weights 
because the network is adjusting each 

! 
! 
t ... of them so it is not possible to decide 

on a meaningful subset to display. Figure 4. A simpler back-propagation network by selected pattern 
According to all of these reasons and 

constraints, we arrange the information 
boxes in circle, design the connections 
to be colour bars, and display these 
colour bars in the middle of the circle. 
When the network is in use, the user 
can select the range of weights to be 
displayed, this defaults to a range larger 
than the largest cun-ent weight to allow 
visible growth on screen without 
requiring rescaling. When the network 

(B/W diagram) 

is being trained, at the very beginning 
all weights would be small random 
values close to 0, so there are no colour 
bars are visible on the screen due to 
their shortness. Thus we display 
significant weights, without cluttering 
the screen. The magnitude of the 
weights is represented by the length of 
the colour bar, and its sign by colour. 
During training, each weight is 
increasing: we display this as two small . 
bars enlarging proportionally to its 
value towards each other from either 
end of the connection for bi-directional 
weights. For unidirectional weights, 
the colour bars extend from the source 
towards the destination neuron only. 

Absolute weight magnitude is more 
important than the sign. We use colour 
to represent positive & negative signs. 

Figure 5. A simpler back-propagation network by selected pattern 
using "flower" display. (B/W diagram) 
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Green is used for positive, while blue is used for negative, with black being zero. This is 
consistent over all of the weights, biases, and the internal / external net input displays. For 
weights, the magnitude is important and is encoded by the length of the colour bar. For other 
properties using our display, the magnitudes are less significant and are displayed as the shade of 
colour. Thus a bright green semi-circle shows a high positive bias. 

For connections to the outside world, values are assumed to be normalised to the range from O 
to 1, being the almost ubiquitous practice. Values in this range are represented by shades of colour 
filling the input, output or target circles from cyan representing I to black representing 0. 

In the back-propagation network, we are interested in the error at each neuron. This is 
represented by a yellow bar of the same shape as the red activation bar, but partially overlapping it. 
This choice of location gives a number of visual cues. If the error is high, the actual activation 
value is not significant as the network will need to learn that pattern better. Once the error is low, 
the red activation bar is no longer even partially occluded as its value is now more meaningful. 

A back-propagation network discussed and analysed previously [3] is shown in Figure 3. It is 
clear from a glance, that at least for this input pattern the activations of neurons 1, 4, 5 and 6 
(counting from the left in the middle layer) are very similar. Since the weights do not change for 
each pattern presentation as significantly as does the activation, the small size of the weigths also 
indicates that these four neurons are very similar. The rightmost 3 neurons could be removed 
without affecting the processing of this network. The recognition of this was trivial compared with 
the sort of computation which is otherwise required and validates the usefulness of our method of 
display. The "flower" display at a later epoch shows that only two neurons are significant. 

A simpler network is displayed in Figure 4, again using the layout for back-propagation. A real
time display with a single window is not useful for showing a network during training on a 
number of patterns, as the activations and error change noticeably, and not particularly 
meaningfully between patterns. Instead, a number of windows are used each showing the effects 
of the same pattern in successive epochs. This produces a seamless animation automatically. The 
number of patterns displayed should be small, and chosen to be representative. It is known that 
most of the time learning is spent on a subset of the patterns [4], allowing reasonable choices. 

The same network is displayed in Figure 5, demonstrating the generic "flower" display. Note 
that one of the neurons is redundant, having very little effect on the output neuron. The "flower" 
display does not detract from the context of layers, as we can place the hidden neurons between the 
input neurons at the bottom and the output neurons at the top. The internal input ratio is shown by 
the relative size of the two regions of back-ground colour in the neurons. In the top right quadrant, 
the top neuron's (green) background demonstrates the ratio of internal input to the sum of the 
absolute values of the inputs. In effect, the size of the upper box indicates the significance of the 
internal input, and the shade from blue through black to green its sign and magnitude. 

4. CONCLUSION 

The general display mode can be used for any standard neural network model. We have already 
considered the following models: back-propagation, including cascaded and recurrent networks; 
interactive activation and competition networks, including Kohonen feature maps; pattern 
associator and auto-associator models. The animation of all these weights, as well as of the 
activations, discloses the internal state of the neural network which is very difficult if not 
impossible to comprehend without this visualisation. 

We have demonstrated that using an animated colour display of the internal behaviour of a 
neural network during training, we can easily see when a neuron is redundant and is not learning. 
This is a significant result which otherwise requires some computational effort. 
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